

Addressing the Design Challenges of RF/ Millimeter Wave Semiconductor Packaging

Craig Vieira – RF Designer

IMAPS New England - May 3, 2016

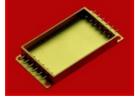
www.ametek-ecp.com

Content Overview

- Company Overview
 - What we do
 - Markets served
 - RF/ high frequency interconnect experience
- What's new in 2016
 - RF Design, Test & Measurement capabilities
 - Portfolio additions & innovative technology
- Design Challenges in high speed Interconnects
 - Think like a wavelength & remember waveguide theory
 - Managing bandwidth, loss, and signal fidelity

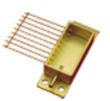
Ametek Electronic Packaging Overview

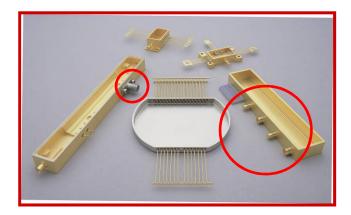
- Ametek, Inc.
 - \$4B sales, 15k employees worldwide
- Electronic Packaging Division specializes in Hermetic microelectronic package design & manufacturing
 - Glass-to-metal seals
 - Ceramic-to-metal seals
 - Ceramic packages
- Who we are
 - Aegis
 - Glasseal Products
 - SCP



Ametek Electronic Packaging Overview

- Markets served
 - Defense
 - Industrial
 - Aerospace
 - Optical Communications




RF Interconnect & Package Experience

I/O Types

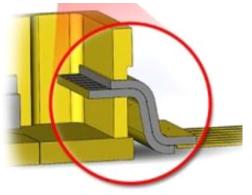
- SMA
 - DC- 26GHz
- K, V, W
 - 40, 67, 110GHz
- SMP
 - Equivalent to GPO
 - 26GHz
- SMPM
 - Equivalent to GPPO
 - 40GHz
- SMPS
 - Equivalent to G3PO
 - 65GHz

Applications

- Hermetic coaxial connectors standalone
- Optical modulators
- Defense

Personal Introduction

- Application & Design Experience
 - ATE, semiconductor test
 - Packaged & wafer
 - DC 80GHz
 - Passive & Active RF/ mm Wave design
- Joined Ametek in June 2015



What's New for 2016

SMPx series

- In house design, specification & datasheet
- Test & evaluation boards
- Customization options
- HTCC R&D Continues
 - S-Bend
 - Alpha design showing performance to 35GHz
 - Beta design intends to meet 50GHz
 - High speed flat solutions
 - Several variations
 - Feasibility study underway

Design Challenges of RF & Millimeter Wave

- Passive circuitry tradeoffs
 - Bandwidth
 - Insertion Loss
 - Size
 - Crosstalk/ signal fidelity
 - Cost

Think Like a Wavelength

- At lower frequencies, wavelength (λ) is not normally a concern
- Commercial RF market bulk spectrum is <6GHz
- Optical market example 40GHz+

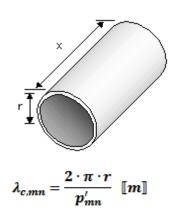
λ Comparison						
Medium Dk 6GHz 40GHz						
Air	1	2"	0.3"			
High Quality PCB	3.5	1.05"	0.16"			
Ceramic	9.5	0.64"	0.1"			

Keep Thinking Like a Wavelength

λ/2 Comparison

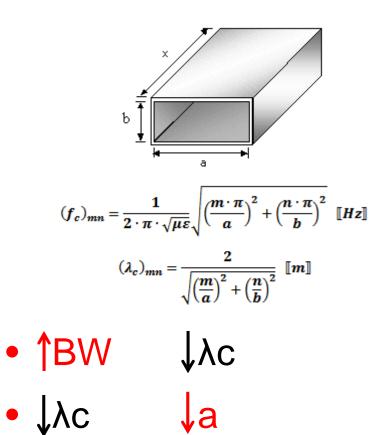
Medium	Dk	6GHz	40GHz
Air	1	1"	0.15"
High Quality PCB	3.5	0.55"	0.08"
Ceramic	9.5	0.32"	0.05"

Observe as frequency increases, wavelength decreases


λ/4 Comparison

Observe as Dk increases, wavelength decreases

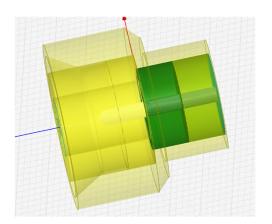
Medium	Dk	6GHz	40GHz	
Air	1	0.5"	0.075"	
High Quality PCB	3.5	0.275"	0.04"	
Ceramic	9.5	0.16"	0.025"	



Now Remember Waveguide Theory

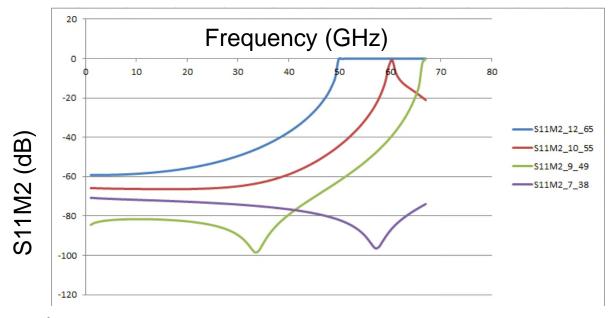
- **†**BW ↓λc
- ↓λc ↓r

Circular Waveguide
Rectangular Waveguide



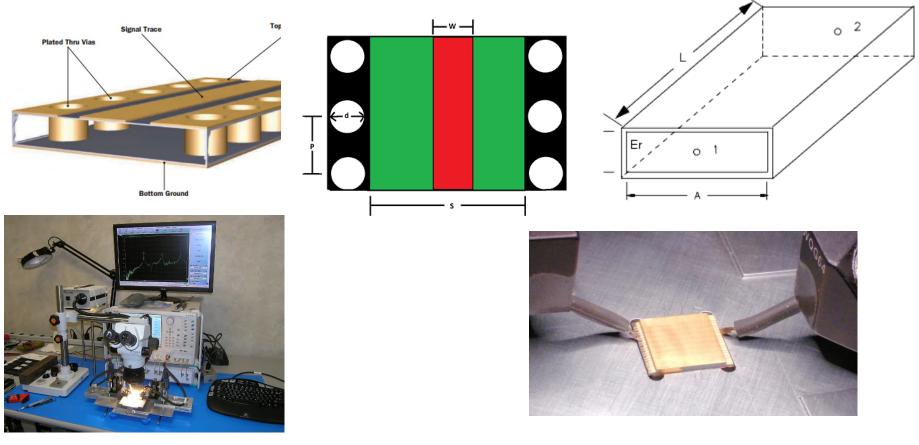
Circular Waveguide – Real World Coax

- Example hermetic male shroud SMPM connector
- Fc limited by conventional glass bead diameter


Dielectric	Application	Er	Zo(Ω)	d (mils)	D (mils)	Fc (GHz)
Air	Ideal world	1	50	12	28	187.8
PTFE	F/F SMPM bullet	2.1	50	14	47	85
Glass Orig	Existing designs	4.1	50	12	65	48

Circular Waveguide – Real World Coax

- Push the SMPM bandwidth by making the TE11 mode propagate higher in frequency
- How?



TE11 S11 v. Frequency & Connector Geometry

Rectangular Waveguide Theory – HTCC

• What factors limit the transmission line BW?

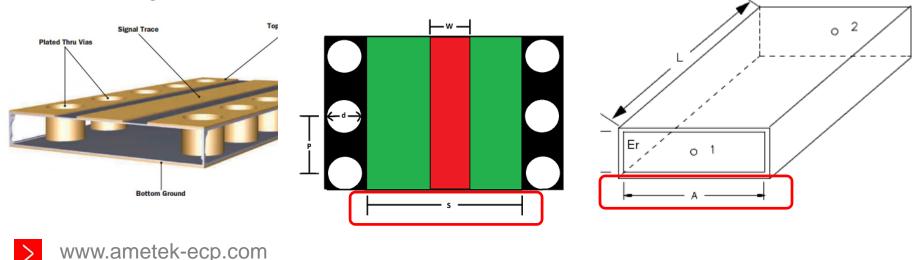
Fc Limitations in HTCC

- Substrate Thickness TE1 mode
 - Parallel plate waveguide / Surface waves
 - To be kept < $\lambda/4$, simulation suggests $\lambda/5$

λ/4 Comparison

Medium	Dk	6GHz	40GHz
Air	1	0.5"	0.075"
High Quality PCB	3.5	0.275"	0.04"
Ceramic	9.5	0.16"	0.025"

- Thinner material is better for higher frequencies
 - But worse for handling, insertion loss, heat, etc.



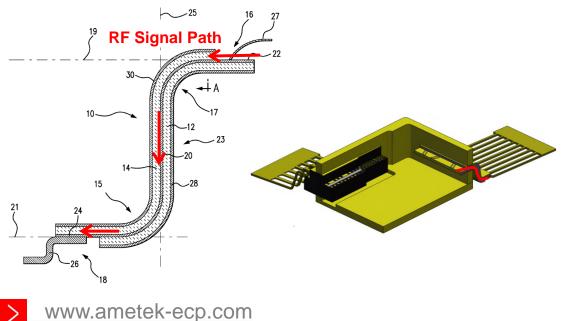
Fc Limitations in HTCC continued

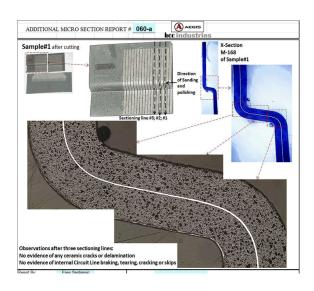
- Ground spacing
- Consider CPWG
 - $s < \lambda/2$ (ground separation)
 - Actual limitation is based on via fence location
 - 's' is like broad wall dimension 'a' of rectangular waveguide

$\lambda/2$ in HTCC

 Via spacing must be < 0.050" for 40GHz modefree operation

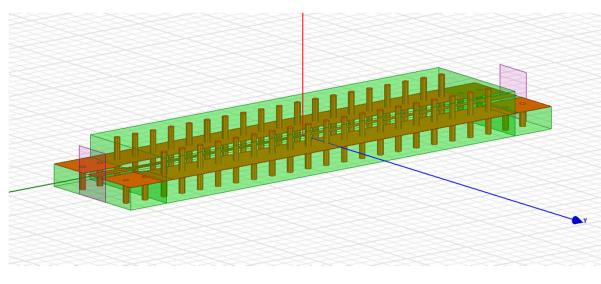
λ/2 Comparison

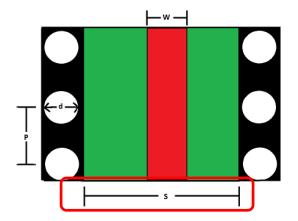

Medium	Dk	6GHz	40GHz
Air	1	1"	0.15"
High Quality PCB	3.5	0.55"	0.08"
Ceramic	9.5	0.32"	0.05"



S-Bend Concept

- Ametek patented the S-Bend concept for HTCC feedthroughs
- Provides a smooth RF signal path with no abrupt transitions nor signal vias

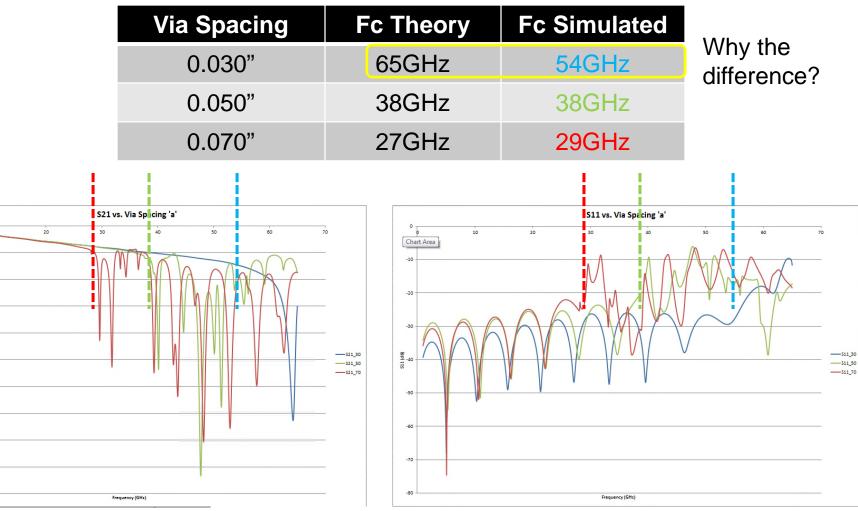




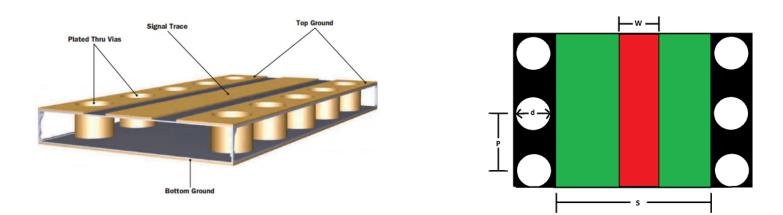
S-Bend Baseline Analysis

- 3D EM Simulation performed on flat HTCC to provide a baseline for results
- Does waveguide theory apply?

(gp) 125

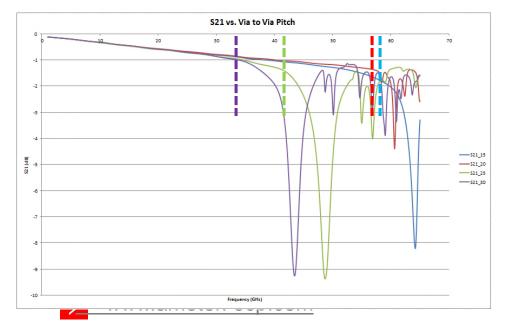

-10

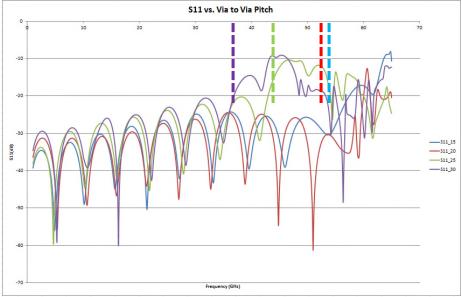
S-Bend Baseline Broad Wall Vias


Via Spacing Comparison

Fc Limitations in HTCC continued

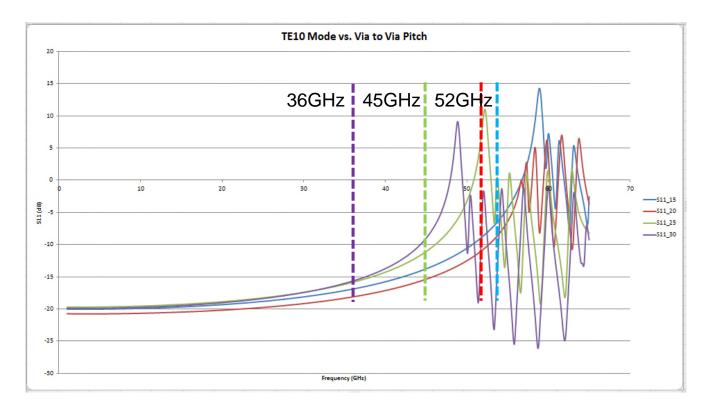
- Via ground fence pitch
- Vias parallel to CPWG signal trace must be spaced < λ/4 ('p' – 'd')





S-Bend Baseline Via to Via Fence Spacing

Via Spacing	P-d	Fc Theory	Fc Simulated
0.015"	0.011"	87GHz	54GHz
0.020"	0.016"	64GHz	52GHz
0.025"	0.021"	45GHz	41GHz
0.030"	0.026"	37GHz	34GHz



S-Bend Baseline Via to Via Fence Pitch

 Another way to look at it, view the results with respect to the TE10 mode

Rectangular Waveguide Theory – Real World

- Where can we go, and how do we get there?
 - Increase bandwidth, decrease thickness
 - Decrease thickness, decrease line widths to maintain 50Ω
 - Decreasing signal widths, increased insertion loss
 - Decreased size, increased crosstalk
- Managing Tradeoffs design for maximum frequency and not much more

Today & Tomorrow

- More bandwidth!
 - IOT (Internet of Things)
 - Smartphones, tablets, PCs, etc.
 - Smart TV's, streaming entertainment

- Markets are driven to push bandwidth, enabling faster communication networks
- 100G & 400G Ethernet need high speed I/O

Q & A

 Thank you for your time, any questions or comments?

> Craig Vieira RF Design Engineer Ametek Electronic Components & Packaging 50 Welby Rd, New Bedford, MA 02702 +1 (508) 998-4368

www.ametek-ecp.com